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ABSTRACT

Several applications based on XML stream processing have re-
cently emerged, such as those for air traffic control and the selec-
tive dissemination of information (SDI). Their common need is to
process a large number of XPath expressions in continuous XML
streams at high throughput.

This paper proposes four techniques for XPath expression pro-
cessing based on Deterministic Finite Automata (DFA) for two pur-
poses: to improve the memory usage efficiency of the automata and
to support the processing of branching XPath expressions. The first
technique, called n-DFA, clusters the given XPath expressions into
n clusters to reduce the number of DFA states. The second, called
shared NFA state table, lets the Non-Deterministic Finite Automata
(NFA) state set be shared among the DFA states. Our experiments
show that memory usage in an 8-DFA can, with the shared NFA

state table, be reduced to 1/40th that of the original 1-DFA. The
optimized NFA conversion and general XPath expression process-

ing algorithm techniques contribute to the processing of branching
XPath expressions efficiently; overall performance is better than is
possible with earlier approaches.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—query processing

General Terms

Performance
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1. INTRODUCTION
Several applications of XML stream processing have emerged

recently in the following areas: air traffic control [19], the selec-
tive dissemination of information (SDI) [2, 18], and continuous
queries [5]. Their common need is to process a large number of
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XPath expressions (XPEs) over continuous XML streams at high
throughput.

For example, consider an XML router network that processes
an XML stream [19] for an air traffic control system. The root
routers (data producers) produce air traffic data in XML format (an
XML stream is a sequence of XML packets) and forward the XML
packets to their children routers (internal routers). These internal
routers receive the XML stream from their parent routers and for-
ward the XML packets to their children routers or clients. Clients
(data consumer) connect to the routers and provide an XPath query
that describes the portions of the XML stream that they would like
to receive. To improve system performance by reducing the num-
ber of XML packets, each XML router replicates a set of XPath
queries from its descendant clients, filters incoming XML pack-
ets against those XPath queries, and forwards the filtered XML
packets requested by its descendant clients. Regarding this pro-
cess, Snoeren’s paper [19] claimed that the performance of public
XML tools should be improved.

LazyDFA [9], and other Non-Deterministic Finite Automata (
NFA ) based algorithms (XFilter [2], YFilter [7], and XTrie [4])
have been proposed as efficient algorithms for processing a large
number of XPEs in XML streams. LazyDFA, which “lazily” con-
structs Deterministic Finite Automata (DFA), is superior to the oth-
ers in terms of processing performance, because it insures a con-
stant high throughput (as fast as an XML parser) for a collection
of single-path XPEs, while the others’ performance is linearly de-
graded against the number of XPEs. However, there are two prob-
lematic issues regarding lazyDFA; 1) when it processes complex
XML documents, it requires a large number of DFA states, and
thus can run out of memory, and 2) it doesn’t handle branching
XPEs; it leaves them to the applications.

1.1 Our Contributions
To address the above two issues, this paper proposes four tech-

niques based on Finite Automata. The first, a variant of Finite Au-
tomata, is composed of n DFAs (n-DFA) to reduce both the total
number of DFA states and the size of the NFA state table stored in
each DFA state. The second, the shared NFA state table, reduces
the memory requirements of the NFA state tables. These two tech-
niques resolve the first issue. The optimized NFA conversion and
general XPE processing algorithm techniques resolve the second
issue and allow branching XPEs to be efficiently processed.

nDFA and shared NFA state table

Converting XPEs into a DFA is the most efficient approach to pro-
cessing XML streams, as long as the generated DFA fits in mem-
ory. The lazyDFA paper [9] shows that lazyDFA is applicable to
data-oriented real XML, because the upper bound of the number of



DFA states is not large. However, when the XML stream is com-
plex such as document-oriented XML, both the number of DFA
states and the size of its NFA state table become excessive; in such
a case, lazyDFA could run out of memory.

We consider TreeBank XML (XML-ized TreeBank linguistic database
[14]) to be typical of complex real XML documents. The lazyDFA
paper [9] also proves that lazyDFA can have, at most, the same
number of DFA states as it has DataGuide nodes [8], and that the
average size of the NFA state table is about p/10 (p is the number
of XPEs) when both * (wildcard) node test and // (descendant) axis
have probabilities of 5%. In addition, Liefke’s paper [13] shows
that the number of DataGuide nodes for TreeBank is 340,000. Sup-
pose we convert 100,000 XPEs that have 5% probabilities for both
* node test and // axis into lazyDFA, and further that an NFA state
table is implemented as an NFA state pointer array. The total NFA
state table size is, in the worst case, given by

(number of DFA state)*(average NFA state table size)*

(size of NFA state pointer)

= 340,000 * 100,000/10 * 4bytes

= 13.6Gbytes

1 Thus, lazyDFA is not applicable to highly irregular XML if the
computer doesn’t have a large memory.

To reduce both the number of DFA states and NFA state table
size, we propose n-DFA, which, given a set of XPEs, groups the
XPEs into n clusters, and constructs a DFA for each cluster. Our
experiments on TreeBank XML show that this approach reduced
the memory usage to 1/8th for 4-DFA and to 1/16th for 8-DFA;
the XPEs were clustered according to axis type (/, //). In addition,
we reduce the NFA state table memory usage of the DFA states
by applying the shared NFA state table technique, which allows
the DFA states to share a common NFA state set. This reduced
the NFA state table size in a DFA state by a factor of 20 in the
TreeBank XML experiments described in Section 6. By combining
these two techniques, the memory usage in 8-DFA with a shared

NFA state table is 40 times less than that of the original 1-DFA for
TreeBank XML. This means that lazyDFA can support complex
XML streams.

Branching XPE Processing

In general, an XPE contains several predicates, each of which is
converted into a branch, but lazyDFA leaves branch processing to
the applications. An XPE can be divided into a set of related single-
path XPEs [9]. For example, the following XPE,

/bib/book[@year=1999]

[contains(title/text(),’XML’)]/author

Figure 1:

can be divided into four interrelated single-path XPEs in Figure2.

Q: $Y IN /bib/book

$Z IN $Y[@year=1999]

$U IN $Y[contains(title/text(),’XML’]

$X IN $Y/author

Figure 2:

We propose two techniques for processing branching XPEs. The
first, optimized NFA conversion, converts the NFA of a branch-

1In a realistic case, the number of DFA states is about 43,000 with
the above settings, but it will approach the upper bound, 340,000 if
we increase the number of XPEs or the probabilities of * or //.

ing XPE into a branch-free NFA by using ordered constraints on
XML. This technique is very useful because as is usual in data-
oriented XML processing; XML schema is defined on an XML
document that has ordered element constraints. The lazyDFA is
applicable for such branch-free NFAs and ensures constant high
throughput (the cost is O(1) for each SAX event). The second
is general XPE processing algorithm for single-path XPE proces-
sors (e.g. n-DFA). A single-path XPE processor evaluates the in-
terrelated single-path XPEs and passes application events (filtered
SAX events plus Variable events that indicate which XPE becomes
matched or un-matched) to the branching XPE processing algo-
rithm. The branching XPE processing algorithm receives the appli-
cation events and evaluates branching XPEs in a bottom-up manner.
The algorithm cost for each SAX event is O(|ST |) (where ST is the
set of related single-path XPEs). This is smaller than the XTrie’s
branching processing cost of O(|ST2|) ∗ O(Lmax), where ST2

represents the substrings for which each single-path XPE in ST is
divided with * and //; so it is obvious that |ST | ≤ |ST2|. Lmax

is the maximum number of levels in the incoming XML stream,
and O(Lmax) corresponds to the cost of connecting the divided
substrings with * and //.

2. BACKGROUND
2.1 XPE Processing Problem in XML streams

One of the key problems to the XPE processing of XML streams
can be expressed as follows: “Given a large set Q of XPEs and an
incoming XML stream D, locate the subset of XPath expressions
Q′ in Q that match D.”

XPath models an XML document as a tree of nodes, and forms
a path expression that selects a set of nodes in an incoming XML.
The path expression, called location path, is composed of a se-
quence of location steps. Each location step has three parts: axis
(/, //), node test (can be wildcard), and optional predicate list. We
define such an XPE, a single-path XPath expression, i.e. it doesn’t
have any predicate or one only at the tail location step. The other
XPEs are called general XPath expressions. For example,
//book[contains(title/text(),”XML”)] is a single-path XPE, because
the predicate is specified only at the tail location step. The XPE in
Figure 1 is a general XPE since it can be divided into the interre-
lated single-path XPEs shown in Figure 2.

2.2 LazyDFA
LazyDFA [9] processes interrelated single-path XPEs and passes

application events (filtered SAX events plus Variable events that
indicate which XPE has become matched or un-matched) to the
applications. The lazy construction technique is influenced by the
lazy transition evaluation in automata [1].

LazyDFA processing proceeds as follows. First, the lazyDFA
processor inputs a query tree (interrelated single-path XPEs) and
each XPE is converted into an NFA (XPath NFA). All XPath NFAs
are combined into a single large NFA (combined NFA) by adding a
new start state that has epsilon edges next to every start state of the
XPath NFA (an interrelation between XPEs is also implemented
as an epsilon edge between XPath NFAs). Second, the incoming
XML stream is parsed by a SAX parser that generates a stream of
SAX events; this is input to the lazyDFA processor,which then eval-
uates the XPEs and generates a stream of application events. The
applications events are filtered SAX events plus Variable events.
During the evaluation, a DFA is lazily constructed from the com-
bined NFA; transitions are evaluated lazily, and only the needed
edges and DFA states are constructed.

There are several important features of lazyDFA. To enhance
performance, the DFA transition table is implemented as a hash al-



gorithm; thus element/attribute transition lookup is efficiently pro-
cessed. Its ideal cost is O(1)2. A value (character() in SAX event)
transition can be implemented in several ways, according to the
predicate types in the query tree; an exact match can be done with
a hash algorithm, as described in [9], arithmetical comparisons can
be done with a variant interval tree [6], and a substring match can
be done with fast string searching algorithms (e.g. automata based
algorithm or Knuth-Morris-Pratt algorithm [6]). These algorithms
can also be applied to other NFA-based algorithms.

The NFA state table size in a DFA state is proportional to the
number of matching XPEs, because the table contains NFA states
for all candidate XPEs that match the incoming XML stream. The
number of DFA states means the number of possible cases during
XPE evaluation. Generally speaking, when the number of DFA
states is small, many XPEs tend to become candidates at the same
DFA state, so the NFA state table size tends to be large. Other-
wise, when the number is large, the NFA state table size tends to be
small. In addition, it is obvious that the number of candidate XPEs
increases with the number of XPEs, // probability, and * probability.
The // probability, in particular, enlarges the number of DFA states
for the following reason. In irregular and deeply nested XML pro-
cessing, the number of lazyDFA states approaches that of eagerly
constructed DFA states. A theorem in Reference [9] shows that
the number of eagerDFA states is exponential against the number
of XPEs with //.

As mentioned, the processing of branching XPEs is left to the
application, and this is another important issue, because in most
practical cases, the XPE is a general XPE with branches.

3. SYSTEM ARCHITECTURE
Figure 3 depicts a system architecture that includes an applica-

tion, a branching XPE processor, a single-path XPE processor, and
an XML parser.

The application registers general XPEs Q to a branching XPE
processor. Theses are decomposed into single-path XPEs Q′, which
are then registered in the single-path XPE processor. The XML
parser parses XML stream and invokes SAX events. The SAX
events are passed to the single-path XPE processor that processes
the single-path XPEs Q′ and invokes application events. The ap-
plication events are passed to the branching XPE processor that
processes the given queries Q and sends a subset of Q to the appli-
cation.

4. SINGLEPATH XPE PROCESSING

4.1 nDFA
The n-DFA key technique groups XPEs into several clusters ac-

cording to axis types (/, //) at each XPE depth level. This approach
reduces both the number of DFA states and NFA state table size for
the following reasons.

• In practical use, // axis probability is low (0% to 20%), thus
// axis probability is lower than / axis probability;

• The number of DFA states grows exponentially with the num-
ber of // (proved by Reference [9]). For example, if we add a
new XPE starting with // axis to lazyDFA, in the worst case,
the original number of DFA states is multiplied by the num-
ber of DFA states of the newly inserted XPE to form the cur-
rent number of DFA states.

2LazyDFA is implemented with an STL library, and its perfor-
mance is linear to the number of entries

Algorithm XPEs-division(Q, N)

Input: Q is a set of single-path XPEs.

N is the number of clusters.

Output: R is the set of XPEs set,

1. lmax = log2(N);

2. R = {Q};
3. for i = 1 to lmax do //for each XPE depth

4. R2 = {};
5. foreach q in R

6. R2 = R2 ∪ XPEs-division-sub(q,i);

7. R = R2;

8. i = i + 1;

9. return R;

Algorithm XPEs-division-sub(q, i)

Input: q is a set of single-path XPEs.

i is XPE depth.

Output: {C1,C2} is set of XPEs set,

1. C1 = C2 = {};
2. foreach xpe in q

3. if is-n-Axis(xpe,i,"//")

4. C1 = C1 ∪ xpe;

5. else

6. C2 = C2 ∪ xpe;

7. return {C1,C2};

Figure 4: Algorithm to divide XPEs into n clusters

• The average NFA state table size is proportional to the num-
ber of //. For the previous example, if we add a new XPE
starting with // axis to lazyDFA, the average NFA state table
size should be increased.

Here, we give a heuristic on how to divide XPEs. If we group
XPEs into a // cluster and a / cluster at each XPE depth (from 1 to
m) in a nested manner, we get 2m-DFA and can avoid both expo-
nential DFA state growth and NFA state table size growth in the /
cluster.

Figure 4 shows the division algorithm for n-DFA. The algorithm
“XPEs-division” is the main function and its subroutine is “XPEs-
division-sub function”. The XPEs-division-sub function groups
XPEs into two clusters C1 (// cluster) and C2 (/ cluster) by checking
the axis at depth i for every XPE. The is-n-Axis(XPE, n, axis)
subroutine checks whether the XPE’s axis at depth n equals axis.
For example, if we divide Q = {//a, //b, /a/b, /a//b, //a/b, /a/b/c} into
four clusters, the above algorithm returns four clusters ({//a,//b},
{//a/b}, {/a//b}, {/a/b,/a/b/c}).

However, the performance of n-DFA falls as the number of clus-
ters increases, because it must deal with n number of DFAs. Since
DFA performance is constant, the n-DFA performance is n times
slower than that of 1-DFA. Thus, it is important to set n according
to the available memory.

4.2 Shared NFA state table
As we saw in Section 1, the size of the NFA state table is another

source of memory exhaustion in lazyDFA. To solve this problem,
we introduce a shared NFA state table. It holds those NFA states
(self-loop-states) that are transitive via a wildcard self-loop edge 3,
and shares them among the NFA state tables of DFA states. Once

3//n is converted into a wildcard self-loop edge and an n labeled
edge.
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the self-loop-states have been put into an NFA state table in DFA
states, they exist in all NFA state tables of the descendent DFA
states, because these NFA state are transitive via wildcard self-
loops. For example, if the NFA state table in a DFA state D is
{S1, S2, S3} and S1 and S2 have wildcard self-loops, the NFA
state table of the descendent DFA states also contain S1 and S2.
This is a simple example, but it implies that when we have a large
number of XPEs, sharing the NFA states can greatly reduce the
DFA’s memory usage.

In a canonical DFA state construction, we gather all NFA states
(will be stored in an NFA state table in the constructing DFA state)
that can be transitive from the NFA states stored in the current DFA
state according to input labels [11]. In the shared NFA state table

technique, we gather two types of NFA states: transitive with only
wildcard self-loop edges (shared NFA state table), and transitive
with other edges (exclusive NFA state table). If a DFA state already
has a shared NFA state table, then the next DFA state has not only
the same shared NFA state table, but also another shared NFA state
table because of the transition. Consequently, the NFA state table
structure is composed of a set of shared NFA state tables and an
exclusive NFA state table as follows

NFA state table = (set<shared NFA state table>,

exclusive NFA state table)

For example, if Q = {//a, //b, //c}, the number of DFA states can be
five (equal to eager DFA construction) and every DFA state shares
the shared NFA state table t0 that contains the root NFA states of
all XPEs S1,S2,S3 (Figure 5).
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Figure 5: An example of the shared NFA state table

However, such an NFA state implementation makes it expensive
to check for DFA state equality when constructing a new DFA state.

Determining DFA state equality necessitates a comparison of NFA
state tables, and an experiment (not described here) showed that
this is very expensive since we must temporarily unpack all shared
NFA state tables to build the original NFA state table. Instead, we
choose a low cost equality check; we compare each shared NFA
state table and exclusive NFA state table of one DFA state with
those of another DFA state. If all of these shared and exclusive
NFA state tables are equal, the two DFA states are evaluated as be-
ing equal. There is a small penalty in that we can have duplicated
DFA states. For example, this equality check returns false when
we compare two NFA state tables {{{S0, S1}, {S1, S3}}, S2} and
{{{S0, S1}, {S3}}, S2}, even though they both are equivalent to
{S0, S1, S3, S2}. In spite of this penalty, our experiments in Sec-
tion 6 show that the shared NFA state table technique efficiently
reduces memory usage.

5. BRANCHING XPE PROCESSING

5.1 Optimized NFA conversion

2 34
567656889

3:

;8<=>7<?@=7=AB5=BC=@DE
FGHIFD

3J
>K=L8M

3N
OPB>MQRSSSTUVWXYZ

2
567656889 OPB>MQRSSS

;8<=>7<?@=7=AB5=BC=@DE
FGHIFD

>K=L8M

Figure 6: An example of optimized NFA conversion

In the usual case of data-oriented XML processing, XML schema
is defined on the XML document and has ordered element con-
straints. The ordered element constraint, which is defined by a se-
quence of elements, indicates that the child elements must follow
the given order of elements. For example, consider the DTD;

<!ELEMENT bib (book)*>

<!ELEMENT book (title, author+)>

<!ATTLIST book year CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)> ...

The declaration for book element defines such an ordered element
constraint; the child elements must follow the order of title, author.

When there are ordered element constraints and there are XPEs
on whose branches the constraint is placed, the branches can be



processed sequentially. Consequently, such an XPE can be con-
verted into a branch-free NFA. Figure 6 depicts an optimized NFA
for the XPE in Figure 1 given the above ordered constraints. Since
there is an ordered constraint (title, author), the branches can be
sequentially processed in the same order.

5.2 Branching XPE Processing Algorithm
As we saw in Figure 3, we first decompose the general XPEs into

single-path XPEs and register these single-path XPEs in a single-
path XPE processor. The decomposed single-path XPE is either
leaf or non-leaf in the query tree. The branching XPE processing
algorithm accepts application events from the single-path XPE pro-
cessor; the application events indicate which XPE becomes matched
(startContext event) or un-matched (endContext event). Branch
evaluation is done in a bottom-up manner. A leaf single-path XPE
is evaluated as true, when the single-path XPE processor invokes
an endContext event of the XPE. A non-leaf XPE is evaluated as
follows. If several branches are conjunctive, their parent XPE is
evaluated as true when all branches are evaluated as true. If several
branches are disjunctive, their parent XPE is evaluated as true when
at least one branch is evaluated as true. If there is no parent XPE,
the original branching XPE is evaluated as true. If a branch has
an ordered XPE predicate that can be expressed using a forward-
axis (e.g. some branch (b1) has to be matched before other branch
(b2)), it is evaluated by checking if b1 has already been evaluated
as true when we receive endContext event of b2. Some branches
that have an ordered XPE predicate expressed using a reverse-axis
(parent, preceding, and so forth) can be re-written into equivalent
reverse-axis-free ones by rewriting the XPE [17].

For example, consider the query expressed in Figure 1, ‘search
authors of such books that are published in 1999 and whose ti-
tle contains XML’. We decompose the XPE into four single-path
XPEs (Figure 2) and register them in the single-path XPE proces-
sor. When we receive endContext($Z), the [@year=1999] branch is
evaluated as true. When we receive the set of, endContext($Z), end-
Context($U), and endContext($X), their parent XPE ($Y) is eval-
uated as true. At the same time, since the XPE ($Y) is a root, the
original branching XPE is evaluated as true.

In addition, the branching XPE algorithm needs stack control;
each stack indicates a context. When we receive a startContext
event of a non-leaf XPE, we push a new context to check its branch
XPEs. When we receive an endContext event of a non-leaf XPE,
we pop the current context. Thus, each non-leaf XPE has a stack.
Figure 7 shows all of the above algorithms.

One optimized implementation technique for the conjunctive eval-
uation restricts the number of child branches; it can be implemented
as bit mask operations. We used this approach in our experiments.

6. EXPERIMENTS
Our execution environment consisted of a dual Intel(R) XEON(TM)

PC (CPU 2.40GHz) with 6GB main memory, running RedHat Linux
7.2. Our compiler was gcc version 2.96 with -O2 optimization op-
tion, and the XML parser was a non-validating parser [3], which
is one of the fastest XML parsers (about ten times faster than the
Xerces version 1.4 C++ Parser).

6.1 XML Data
We used three data sets: astronomical NASA XML [16] (data-

oriented simple XML), NAA classified advertising XML [15] (data-
oriented XML of moderate complexity), and linguistic TreeBank
XML (document-oriented complex XML).

The NASA and TreeBank XMLs are real data while NAA is

Algorithm startContext(var)

Input: var is a single-path XPE handle, and

this function is called-back from

the single-path XPE processor.

Output: nothing.

1. if (var->isNonLeafXPE())

2. var->pushNewContext();

Algorithm endContext(var)

Input: var is a single-path XPE handle, and

this function is called-back from

the single-path XPE processor.

Output: nothing.

complete is initialized at startDocument()

and is returned by endDocument(). It

contains a subset of Q matches to the

input D.

1. if (var->isNonLeafXPE())

2. if (var->isBranchesMatched())

3. if (var->isRootXPE())

4. complete = complete ∪ var;

5. else // var is not a root XPE

6. var->getParentXPE()->insert(var);

7. var->popCurrentContext();

8. else // var is a leaf XPE

9. if (var->isRootXPE())

10. complete = complete ∪ var;

11. else // var is not a root XPE

12. var->getParentXPE()->insert(var);

Figure 7: Algorithm for Branching XPE Processing

Table 1: XML stream data
XML Number of Number of

max depth nestings elements

DTD data DTD data

NASA 7 1 18 113 476645

NAA 31 7 7671 365 372691

TreeBank 36 29 386614 250 2437666

synthetic data created by the IBM XML data generator 4. Table 1
shows the features of these data. The first column shows the max-
imum element level (depth) of XML. The NASA XML is rather
shallow, whereas NAA and TreeBank XMLs are very deep. The
second column shows the number of nestings in DTD and XML.
The nestings of DTD indicate how many elements are recursively
defined in DTD. The nestings of XML indicate how many recur-
sive patterns were present in XML. We found that NASA data has
only one recursive element in its DTD and 18 patterns in its XML.
The NAA XML has a moderate number of recursive patterns. The
TreeBank XML has a huge number of recursive patterns. The last
column shows the number of element declarations in DTD and start
tags in XML.

6.2 nDFA and shared NFA state table results

nDFA result

We conducted automata experiments on n-DFA (n=1,2,4,8). We
used all three data sets and generated 100,000 (100K) XPEs using

4http://www.alphaworks.ibm.com/tech/xmlgenerator
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(c) Memory usage
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Figure 9: Evaluations of n-DFA with Shared NFA state table technique: same settings as in Figure 8

the XPE generator from yfilter [7] with the probability of ∗ node
test and // axis each set to 5%. Figure 8 depicts (a) the total num-
ber of DFA states in the n DFAs, (b) average exclusive NFA state
table size in DFA states, and (c) memory usage of all n DFAs. In
(a), the number increases proportionally for NASA XML, and there
is no improvement for NAA XML; This is because the XMLs are
not very complex. For TreeBank XML, the number decreases lin-
early, because there are fewer DFA states of lazyDFA than those of
eagerDFA (In the case of eagerDFA, we expect the number would
decrease exponentially). In (b), the average NFA state table size
decreases linearly for all data sets. In (c), we see the excellent re-
sult that the memory usage has been reduced 8 fold in 4-DFA and
16 fold in 8-DFA for TreeBank XML (compared with 1-DFA). For
NASA XML, the memory usage is 9MB for all n-DFAs, because
the NFA state table is simply split. We also found a linear improve-
ment for NAA XML.

Figure 10 depicts TreeBank XML throughput experiments on n-

DFA for the warm-up and stable phase. The warm-up phase is when
the DFA states in lazyDFA are constructed, and the stable phase
is when there is no need for DFA state construction (all needed
DFA states have been already constructed). As n becomes larger,
all DFAs become smaller in TreeBank, so the warm-up throughput
increases. In the stable phase, the throughput linearly decreases
with n, because it must deal with n DFAs.

nDFA and shared NFA state table combined result

Next, we conducted the same experiment on n-DFA (n=1,2,4,8),
but this time using the shared NFA state table technique. Figure 9
shows the results. The difference between Figure 9 and Figure 8
confirms the efficiency of the shared NFA state table technique. In
terms of the number of DFA states (a), only TreeBank XML shows
an increase in the number of DFA states, because of the penalty of
the low cost DFA state equality check. In terms of average NFA
state table size (b), we found a large improvement in all XML data

sets which indicates many shared NFA state tables were shared
among many DFA states. In terms of memory usage (c), we also
found a large improvement in NAA and TreeBank XML (9MB be-
comes 6MB in NASA XML). Especially in TreeBank XML, com-
pared with Figure 8, memory usage is only 1/4, 1/3, 1/3 and 2/5 for
1-DFA, 2-DFA, 4-DFA and 8-DFA, respectively. As a result, by
combining n-DFA with shared NFA state table, 8-DFA with shared

NFA state table sees a 40 fold reduction in memory usage.
We conducted the same throughput experiments on n-DFA using

the shared NFA state table. The n-DFA with the shared NFA state

table was found to be slightly faster than the without case during
the warm-up phase. The throughput result for the stable phase was
the same as the shared NFA state table result.

Figure 11 depicts the results of TreeBank XML experiments on
8-DFA using the shared NFA state table, for which we varied the
number of XPEs and * and // probability, and kept constant the
other parameters, the number of XPEs (100K), and * and // proba-
bility (5%). (a) and (c) show that the large // probability for com-
plex XML like TreeBank requires lazyDFA to have a large number
of DFA states and large memory. However, in practical cases, we
believe that the // probability is low (0% to 20%), so the n-DFA

with a Shared NFA state table technique should be applicable to
complex XML. In addition, we can control the n of n-DFA, to re-
duce memory usage.

6.3 Branching XPE Processing
We conducted several experiments on branching XPE processing

using NASA XML, and found that the number of branches is the
only factor that affects processing performance.

Figure 12 depicts the results of throughput experiments on 100K
branching XPEs with 5% ∗ node test and // axis probabilities.
We varied the nesting XPE probability (0%, 30% and 60%). The
number of decomposed single-path XPEs were 100,000, 265,654,
and 430,256, respectively. Figure 12 (a) shows the throughput of
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Figure 10: Throughput Experiments for n-DFA (n = 1,2,4,8)
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Figure 11: Evaluations of 8-DFA with Shared NFA state table technique: TreeBank XML

lazyDFA processing plus that when invoking the startContext and
endContext events. (b) shows the throughput of branching XPE
processing including (a)’s processing. (c) shows the throughput of
branching XPE processing excluding (a)’s processing.

LazyDFA throughput without event invocations was around 25MB/s.
Figure 12 (a) shows that event invocation dominates the perfor-
mance and that the throughput is dependent on the number of de-
composed single-path XPEs. (a) and (c) show that branching XPE
processing is as fast as event invocation and that the branching XPE
processing is also dependent on the number of decomposed single-
path XPEs.

7. DISCUSSION

7.1 Branch Processing with DFA
We did not extend lazyDFA to support Branching XPE (see XPush

machine description in Section 8.2), because we expected the num-
ber of DFA states would grow exponentially with the number of
branches. For example, if we were to add a new XPE with a branch
(e.g. /bib[@domain=”database”]/book) to a lazily constructed DFA,
the number of DFA states would almost double because each DFA
state (except a DFA state transitive by the root bib element) must
remember whether the predicate was evaluated as true or false.

8. RELATED WORK

8.1 Singlepath XPE Processing
NFA-based algorithms (XFilter [2], YFilter [7], and XTrie [4])

have been proposed as efficient algorithms to process a large num-
ber of XPEs in XML streams. They have a memory space guaran-
tee that is proportional to the size of all XPEs; however their per-

formance linearly falls with the number of XPEs. An optimization
in XFilter, called list balancing, can increase throughput by factors
of two to four. XTrie identifies common strings in the XPEs and
organizes them in a Trie. At run-time, an additional data structure
is maintained in order to keep track of the interaction between sub-
strings. The throughput of XTrie is about two to four times higher
than that of XFilter with list balancing.

Ives et al. [12] describes a general-purpose XML query proces-
sor based on eagerDFA that is efficient for a small number of XPEs
(e.g. an XQuery expression can have around twenty XPEs at most).
The lazyDFA paper of Green et al. [9] proves that eagerDFA is not
applicable to a large number of XPEs. The throughput of lazyDFA
is constant because the element/attribute transition table is imple-
mented as a hash algorithm. Thus, lazyDFA outperforms other
NFA-based algorithms by factors up to 10,000 for NASA XML.

Olteanu et al. [17] use rewriting rules to transform location paths
with reverse axes, such as ancestor and preceding into equivalent
reverse-axis-free ones. This enables efficient SAX-based streaming
processing of XPEs.

8.2 Branching XPE Processing
XTrie [4] processes branching XPEs and yields optimization by

skipping redundant matching. The cost of our algorithm for each
SAX event from the XML parser is

(number of matching single-path XPEs)*{
O(Alg. startContext)|O(Alg. endtContext)}

= |ST|*{O(pushNewContext)|O(isBranchsMatches)}
= |ST|*{O(1)|O(1)}

= O(|ST|)

where ST is the set of related single-path XPEs. XTrie’s branching
processing cost is



(a) lazyDFA Processing + event invocations
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Figure 12: Throughput Experiments for branching XPE Processing; XPEs 100K, prob(//) 5%, prob(*) 5%

O(MATCH-SUBSTRING for non-leaf substring)*

O(FIND-PARENT-LEVEL)

= O(|ST2|)*O(Lmax)

where ST2 represents the substrings for which each single-path
XPE in ST is divided with * and //; It is obvious that |ST | ≤
|ST2|. Lmax is the maximum number of levels in the incoming
XML stream, and the O(Lmax) corresponds to the cost for con-
necting the divided substrings with * and //. Thus, our branching
XPE processing algorithm is faster than XTrie’s.

XPush machine [10] is a bottom-up DFA-based branching XPE
processing algorithm with several optimizations; 1) state pruning
by additional top-down processing, and 2)generating the DFA from
training data. Their experiment implies that even if the data is sim-
ple, like NASA, the number of DFA states in the XPush machine
reaches 100,000. It would be difficult to apply the XPush machine
to more complicated XML such as NAA and TreeBank XML.

9. CONCLUSION
This paper described techniques for XPath expression processing

based on DFA for two purposes; to improve memory usage of the
automata and to support the processing of branching XPath expres-
sions. The n-DFA and shared NFA state table techniques contribute
to reducing the memory requirements of DFA, especially when pro-
cessing complex XML. The optimized NFA conversion and general

XPE processing algorithm techniques allow branching XPEs to be
efficiently processed. Our experiments show that memory usage in
8-DFA with a shared NFA state table can be reduced 40 fold from
the original 1-DFA. We can set the n of n-DFA according to the
available memory. Although the throughput falls linearly as we in-
crease n, it is still constant with respect to the number of XPEs; it
thus outperforms other NFA-based algorithms. The branching XPE
processing algorithm is also faster than earlier approaches.
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